Strategy Improvement for Stochastic Rabin and Streett Games
نویسندگان
چکیده
A stochastic graph game is played by two players on a game graph with probabilistic transitions. We consider stochastic graph games with ω-regular winning conditions specified as Rabin or Streett objectives. These games are NP-complete and coNP-complete, respectively. The value of the game for a player at a state s given an objective Φ is the maximal probability that the player can guarantee the satisfaction of Φ from s. We present a strategy improvement algorithm to compute values in stochastic Rabin games, where an improvement step involves solving Markov decision processes (MDPs) and non-stochastic Rabin games. The algorithm also computes values for stochastic Streett games but does not directly yield an optimal strategy for Streett objectives. We then show how to obtain an optimal strategy for Streett objectives by solving certain non-stochastic Streett games.
منابع مشابه
The Complexity of Stochastic Rabin and Streett Games'
The theory of graph games with ω-regular winning conditions is the foundation for modeling and synthesizing reactive processes. In the case of stochastic reactive processes, the corresponding stochastic graph games have three players, two of them (System and Environment) behaving adversarially, and the third (Uncertainty) behaving probabilistically. We consider two problems for stochastic graph...
متن کاملStrategy Construction in Infinite Ganes with Streett and Rabin Chain Winning Conditions
We consider nite-state games as a model of nonterminating reactive computations. A natural type of speciication is given by games with Streett winning condition (corresponding to automata accepting by conjunctions of fairness conditions). We present an algorithm which solves the problem of program synthesis for these speciications. We proceed in two steps: First, we give a reduction of Streett ...
متن کاملGeneralized Parity Games
We consider games where the winning conditions are disjunctions (or dually, conjunctions) of parity conditions; we call them generalized parity games. These winning conditions, while ω-regular, arise naturally when considering fair simulation between parity automata, secure equilibria for parity conditions, and determinization of Rabin automata. We show that these games retain the computational...
متن کاملOn Polynomial-Size Programs Winning Finite-State Games
Finite-state reactive programs are identiied with nite au-tomata which realize winning strategies in B uchi-Landweber games. The games are speciied by nite \game graphs" equipped with diierent winning conditions (\Rabin condition", \Streett condition" and \Muller con-dition", deened in analogy to the theory of !-automata). We show that for two classes of games with Muller winning condition poly...
متن کاملOn Fixed-Parameter Complexity of Infinite Games
We investigate and classify fixed parameter complexity of several infinite duration games, including Rabin, Streett, Muller, parity, mean payoff, and simple stochastic, using different natural parameterizations. Most known fixed parameter intractable games are PSPACEor EXP-complete classically, AW [∗] or XP-hard parametrically, and are all finite duration games. In contrast, the games we consid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006